(3-3- o -

USAELRDL Technical Report 2345

403 761

AN APPLICATION OF HEURISTIC PROGRAMMING TO THE PROBLEM

40376 M

KR ot o

OF THEOREM PROVING BY MACHINE

i

P I -

S ayt

o) e W e T

W ‘ e
2 sy *

Serafino Amoroso

- B
e 2
Marck 1963 Jisih A ;

UNITED STATES ARMY
ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY

FORT MONMOUTH, N.J.

S air 7S

U. S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY
FORT MONMOUTH, NEW JERSEY

March 1963

USAELRDL Technicel Report 2345 has been prepared under the supervision
of the Institute for Exploratory Research, and is published for the infor-
mation and guidance of all concerned. Suggestions or criticisms relative to
the form, contents, purpose, or use of this publication should be referred to
the Comiending Officer, U. S. Army Electronics Research and Development
Laeboratory, Attn: Director, Exploratory Research Division "C".

J. M. KIMBROUGH, JR
Colonel, Signal Corps
Commanding

OFFICIAL:
HOWARD W. KILIAM
Mejor, SigC
Adjutant

DISTRIBUTION:
Special

QUALIFIED REQUESTERS MAY OBTAIN COFIES OF THIS REPORT FROM ASTIA.

THIS REPORT HAS BEEN RELEASED TO THE OFFICE OF TECHNICAL SERVICES,
U. S. DEPARTINT OF COMyIRCE, WASHINGTON 25, D. C., FOR SALE TO THE
G=TZRAL PUBLIC.

AN APPLICATION OF EEURISTIC PROGRAMMING TO THE PROBLEM

OF THEOREM PROVING BY MACHINE

Serafino Amoroso

DA Task No. 3A99-25-004-03

Abstract

A mechanical procedure using trial and error techniques is outlined
which will verify, in a large number of cases, the validity of an argument
form expressed in quantification theory. Combinational processes have been

used to & minimm extent. Techniques of implementation for a digital come
puter are also discussed.

U. S. ARMY ELECTRONICS RESEARCE AND DEVELOPMENT LABORATORY
FORT MONMOUTH, NEW JERSEY

CONIENTS

ABSTRACT

INTRODUCTION

DISCUSSION
Heuristic Methods in Programming
Definition of Well-Formed Formula in Quantificational logic
Interpretation of Quantificational Formulas

Definition Based on the Notion of an Interpretation of a
Quantificationel Formila

Prenex Normal Form
Quine's Proof Procedure for Quantificational Logic
The Machine Procedure

A Sumnary of the Syntactical Devices Required for an
Efficient Machine Realization

An Illustration of the Machine Operating on a Problem
Problems for Future Research

REFERENCES

ii

L S

NN

O v un F w

E

15

AN APPLICATION OF HEURISTIC PROGRAMIIIG TO THE PROBLEM
OF THEOREM PROVING BY MACHIIE

I TRODUCTION

The hope of using "mechanical methods” to achieve significant results in
mathematics, such as obtaining mathemathical theorems, seemed on the verge of
realization vhen Hilbert noted that all classicel mathematies could be expres-
sed in the language of quantification theory. The ability to determine
vhether or not a guantificationel formula (theorem) follows logically from a
finite set of given quantificational formulas (exioms), was the central prob-
lem in the hoped for process. This central problem is kmown now es the
Entscheidungs problem. The subsequent work of Turing, Church and others in
the 1930's, which showed the unsolvability of this problem resulted in the
feeling that "mechanical methods" (which implies owr modern computers) could
not be used to resolve "significant"” problems in mathematics, Renewed inter-
est in this topic has arisen as a result of recently developed methods which
will rechanically (effectively) determine that a quantificational argument is
velid if end only if it is velid, but will be inconclusive if the quantifi-
cational ergument is not a logical truth. Also, effective procedures have
been developed which will give either an affirmative or negative answer to
this question for a significant subset of the set of 8ll quantificational
arguments.,

There have been a number of attempts to produce a workeble machine pro-
gran, making use of the available procedures, but each has run into consider-
e2ble difficulty with respect to the propositional (truth-functional) tests
requireé by the methods. lost of the theoretical discussions of the proof
procedures, for exemple, Cuine's ,l point to truth-tables to resolve the prob-
lems involving the truth-functional tests. Although this is theoretically an
effective process to solve all questions with respect to truth values of
propositional formulas for use on computers this is an impractical approach,
since the number of rows on a truth-table increases exponentially with the
nuzber of different propositional letters in the given formula under test.

To date,the best epproach to this problem seems to be that of Davis and
Putne.m.z They have presented a procedure for testing truth-functional forms

that, with respect to use on & computer, far surpasses the tru‘th-tﬁble method,
and 1s more practical than the methods used by Wang® and Gilmore.,? But even
the Davis-Putnem © test 1is, in general, quite time consuming, and is still
the phase of the overall procedure most in need of improvement. Interesting
work on this problem 1s now being done at IEM by Dr. B, Dunham,

This report is an application of a trial and error technique that simu-
lates the wey & human being would attack the problem by extracting additional
information frem & previous phase of the process to reduce \the propositional
tests to a point where even the truth-table method might be used., The methods
used in this approach (heuristics) do not give rise to a procedure theoreti-
cally as powerful as the Davis-Putnam® approach. However, improved heuristics
may increase the power of this machine procedure, if it is not already suf-
ficiently poverful, to the point where the reduced efforts required in truth-
functional testing do warrant the reduced processing power (in the sense
that there are certain quantificational arguments that are valid and unprove
able by the machi e procedure). The question of whether or not the present
procedure is too limited has not been adequately investigated.

1

DISCuSsToN

Heuristic llethiods in Prozrarming

Practically all problems solved by modern electronic digital computers
todzy have acsociated with them an effective "algorithm", that is, a
crotematic procedure which, when presented with the problem as input, is
guarenteed to produce & solution as outvut. There are, howvever, interest-
ing problems for which no algorithm is known, or no efficient one may be
Imowr, or no algorithnm is possible, Even though we may not have an algo-
rithe for e given problem, we nay at least kmow how to recognize & soluticn,
as such, shoulcd one ampear. A ninirmm requirement essociated with problem
eolving, vwhether by man or machine, seems to be: If any "solution” should
eppeer, a "method" st exist for deciding vhether or not it really is a
solutioz,

Usually sre shall have vartial information sbout how to produce a
eolution to such problens. For exarmple, as & result of successful human
atterpis at solutions In the vpast for similar problems, we may have enough
information o encble a partial decision procedure. That is, a systematic
rrocedure that cannever guarantiee solutions to all questions about the
Troblenms ror wvnich it was designed, but nevertheless, it may be powerful
enough to nenile successfully & large percentage of problems presented to
ive One simrly described handling of such problems by machine is to have
he mochine search and test in & systematic sray all possible expressions
That could pe so_utions., Even though we !mow something ebout the syntactic
Jorm of a sgolution, such bliné, brute force emmeration almost always in-

ct

little more then the s'rrematic testing of gll exvressions in some language.
rertunotely, It Is usu2lly possible to extract added informetion from the
given rrotlex underinvestigetion by the mechine, and thereby reduce the
mimoer of triel attempis at & soluticn to & reasonzble rumber.

Before ciscussing the machine procedure of this report, a detailed
(iscussion of the fundemental notions of quantificational logic needed in
tae Jollovwing discussions will be Geveloped.

Definition ¢f {lell-Formed Formula in Quentificaticnel Logic

Ir this section, following the precentetions in Patton5 and Wa.ng,B we
Till present a definition of the synmtactical properties of the language of
guantilicaticnal logic. The elemental syrbols that form the alphabet of
the languege are classified as follows:

Logicel comnectives: ", " & ", VYT, "D ",
Stzierent let-ers: TATTBY,NCY, e e
Precicate leivers: TG, THY, NI, se.
Inéivicual nemes: "at, T, T e, see e
Individual veriables: " x Y, "M, Vot L,

Grontifiers: "(E)", "(:)", where x is anr individuel varieble.

Since statement letters and predicate letters will always be followed
by different syntactical forms (predicate letters will be followed immediate-
1y on the right by individual names, individual variables or both, statement
letters will never be immediately followed on the right by these symbols),
machine procedures do not demand the set of statement lettem be mutually ex-
clusive from the set of predicate letters. It will be essential, however,
that individual nemes and individusl variables belong to mutually exclusive
sets., These points will be discussed in more detail later.

From the set of all possible finite strings of these symbols, a unique
subset will be called well-formed formulas (wff's) and will be defined re-
cursively as follows:

1. A statement letter is a wff.

2. A string consisting of a predicate letter followed by any number
of individual names and/or individual variables in any combination is a wff,
and the variables occurring in it are called free variables.

3. If S is a wff, then so is ~v S (called the negation of S).

L, If S ané T are vff's, thensoare (S&T), (SVT), and
(s > T), and the free variables of S and T are also free in these wff's.
(They are called, respectively, the conjunctiion of S and T, the disjunction
of S and T, and the implication of T by S.)

5. If S is a2 wff anéd x is any varieble, then provided "(Ex)" or "(x)"
does not occur in S, then (Ex)S and (:2)S are wf's, and the variables other
then x in S that occurred free still occur free. x in S is now said to
be bouné by the quantifier.

Interpretation of Quantificational Formulas

Quaentificetional forrmlas as such cannot be said to be true or false
until an interpretation is presented. An interrretation of a quantifi-
cational formula S will consist of the following assignments:

1. To each statement letter in S, a truth value.

2. To the quantifiers of S, a set of individual elements called a
universe.

3. To each free varieble of S, a member of the universe.
k. To each predicate, with its variables and individual nemes, a truth
value assigned to each string obtained by substituting individusl elements

from the universe for the variables.

Once an interpretation has been made, the truth value of the quantifi-
cational formula is determined by the following recursive rules:

1. A formula without logical connectives or quantifiers obviously has
& truth value when its symbols have been interpreted.

2, (SVT) is true if and only if at least one of S or T is true.
(S & T) is true if and only if both S and T are true. (S T) is false if
end only if S is true and T is false. ~~ S is true if and only if § is
false.

3, If x is any variable and (x)S is a wff, then (x)S is true for a
given wniverse if and only if S is true under every possible interpretation
of x in the given universe.

Lk, (Ex)S is true in a given universe if and only if S is true for at
least one interpretation of x in the given universe.

Since statement letters "disappear" as soon as an interpretation is
given, they will not affect any of the problems with which we will be con-
cerned., Ve shall assume from here on that statement letters do not appear in
any formula.

The effect of statement letters in any formual is accounted for accord-
ing to the following replacement rules:

1. (2) replace ~ T by F,
(b) replace ~ F by T,

2. (2) replace T &Bor B & Tby3B,

(b) repdlace F & Bor B & F by F,

5 (a) replace TVBorBVThby¥q,

(b) replece FVBor BVFbyB,

L. (a) replace TD B by B,
(v) replace B D F by ~ B,

(¢) replace BOTor F2 B by T.

Definition Based on the liotion of an Interpretation of a
Quantificational Formula

1. A non-empty interpretation of a wff is one that assigns to the
gquantifiers of the wif & non-empty universe. From now on we shall assume
vhen using the term "interpretation" a non-empty one.,

2, ALl S is a logical truth if end only if S comes out true on every
interpretation.

3. A Wff S is consistent if and only if S comes out true on some in-
terpretation.

L, Two wff's S and T are logically equivalent if and only if ((s>7T)
& (T=5)) is a logical truth.

5. A finite set of wff's is consistent if and only if any conjunction
of ell the wff's is consistent. L

6. An argument is valid if and only if the set of wff's that comprises
its premise, and the negation of its conclusion, is inconsistent.

Prenex Normal Form

Given any wif S it is always possible to find a wff T which is logically
equivalent to S, and T is of the form (Q) (Q2)...(Qy)(T'), where (T') con-
tains no quantifiers. Qj, i =1, 2, ..., n, 1s a Quantifier (either an (Ex)
or (x)). Vhen any wff is in the form of T (that is, all quantifiers on the
left), it is said to be in prenex normal form. For a further discussion of
this topic see reference 6.

Quine's Proof Procedure for Quantificational Logic

The method to be described now, forms the basis of mi machine procedure.
It was presented in detail in the original peper by Quinet which appeared in
the Journal of Symbolic Logic in 1955. The method is a test for the incon-
sistency of a finite set of quantificational formules. That is, it can prove
any inconsistent set of formulas to be inconsistent, but it cannot prove any
consistent set of forzmulas to be consistent. We can use the method to prove
the validity of arguments since an argument is valid if and only if the con-
Junction of the set of formulas representing the premises of the argument and
the negation of the conclusion of the argument is inconsistent. This can be
seen more clearly by considering the following: 1let A bPe a set of formulas
representing the premises of an argument, and let B represent a conclusion.
Ve kmow that A, and therefore B,is a valid argument if and only if any con-
Junction of all the premises and the negation of the conclusion is incon-
sistent. Since, from truth-functional logic, p & ~» q is the negation of
P> qQ, then if p & ~sq is inconsistent, then P> q must be logical truth.

The first requirement of the method is that each formula of the set
being tested for inconsistency be put into prenex normal form in such a man-
ner that no varisble letter that occurs in any formula as an existential
quantifier occurs free anywhere, or as another existential quantifier in the
set of formulas. If we now have a set of formulas Py, Pp, «.., P satisfying
these conditions, we now construct for each P; and F;, called the functional
normal form, as follows: delete the leftmost existential quantifier P; and
subscribe X1Xp...X) to each variable that it bound, where the universal
quentifier that was deleted is (x;) (xp)...(xy), in that order. Continue
the above process with each next leftmost existential quantifier of Py finally
arriving at the F4, A term with subscripts in one of the F's is called a
function term. What is called the lexicon for the set of P's is a set of
elements determined as follows:

1. All variables which occur free and subscriptless in the F's, or if
there are none, then the letter a. ’

2, All results of wniformly replacing the subscript letters of fumection
terms by members of the lexicon.

A lexical instance of F. results when the quantifiers of F; are dropped
and the variables they boundj"are replaced by members of the lexicon. The
subscript letters of the function terms are to count &8 bound variables for
purposes of this definition. The method is based on the principle that a set
of quantificational formulas is inconsistent if and only if some lexical

5

instance of the set is truth-functionally inconsistent. The completeress and
soundness of the method are discussed in references 1, 5, and T.

The Machine Procedure

The approach we will take in describing the machine procedure for this
project will be as follows: we will first describe the mechanical processes
involved, in a nstural language (English) assuming certain machine processors
available to handle the manipulations necessary on the strings of information.,
The machine capabilities will not always be specifically mentioned in this
section. Later we will concentrate on the machine capebilities demanded by
our problem.

a. The Machine Formation of the Functional Normal Forms

The procedure for constructing functional normal forms for any finite
set of quantificational formulas is completely deterministic and poses little
challenge to anyone familiar with the usual processing involved with mechani-
cal string languages. To bring out the "mechanical" features of the follow-
ing manipulations which will be performed on our information, we shall assume
certain registers available and certain operations such as formation and
deletion of lists, scanning strings, and concatenstion and deconcatenation.
All of these, and many others, shall be discussed in detail when we consider
the general syntactical mechanical processors made necessary, or just desira-
ble, for a machine realization for our problem. Ve shall introduce informal-
1y each operation and device as needed. Many will not be discussed directly
in this section, but will be implied by the required manipulations.

Ve assume the Pi's are stored in a general storage srea and can be call-
ed into a genersl working register A at will., Ve assume an auxiliary regis-
ter S vhich will be used in the mamner of a "scratch pad”. Both of these and
any other we may need will be registers of flexible size., Assume the regis-
ters are empty, and bring P; into A-register. Scan P; from left to right as
follows: if the symbols on the extreme left are those of an existential
quantifier (left parenthesis, "E", variable name, right parenthesis), then
they are deleted. DNote here, we are implying the ability to recognize a
variable nsme symbol, therefore, & list must be available of variable names,
and a comparison operation is performed. If these first symbols are not those
of an existential quantifier, then the machine asks whether or not they are
the symbols of a universal quantifier. If they are not, then P; is already
in functional normal form and is now considered F;. Ve store Fy and call Pp
into the A-register. But, if these symbols are those of a universal quanti-
fier, we do not delete this quantifier, but place a copy of its varisble name
in suxiliary register S. We then move our scan to the symbols to the right
of the quantifier. From now on, every time we meet & universal quantifier in
our scan, we concatenate its variable name to the right of the contents of
the S-register. Also, from now on, each time we meet an existential guanti-
fier we delete it andconcatenate to each variable it bound in the formulsa,
the symbol "/" followed by the contents of the S-register. We do not erase
the contents of the S-register during this concatenation operation. The above
procedures are continued until something other than a quantifier is met at
which time we erase the S-register, store the contents of A in F, (the name
of the location in general storage containing Fy is "Fi")-' and chl the con-
tents of Py into the A-register. These procedures are continued until all
the P's have been transformed into F's.

6

b. Problems of Lexicon Formation

lany of the processes that we shall consider in this section and

especially in the next section on "optimal instantiation" are difficult, if
not impossible, to consider in general - let alone solve in general, The
best stretegy that we have found to attack these prroblems is to design pro-
cedures that may work in a large number of cases, and then through empirical
results we can analyze our results and modify our design, or completely
rebuild them, if the analysis indicates that such is desirable, or necessary
(end of course possible). This is in line with what many researchers, in
ertificial intelligence systems, consider to be the best strategy for their
oroblems, that is to postulate a system capable perhaps of exhibiting an

teresting behavior, then to explore it experimentally and theoreticelily
(modifications being made, of course, as & result of empirical data)., Ex-
anmples of such projects are the neural nerve net experiments of Hollend and
his associates, the work of Amarel in sutomatic theory formation processes,
anc llewell, Shew, and Simon's work on the Logic Theory Machine end the
General Problem Solver.

The system being discussed in this rewrt has undergone some modification.
The vresent section discusses the problems encountered when the systen was
designed to enurerate a finite number of lexicon members. The number depend-
ed upon the "complexity" of the set of P's. Although this vrocess is no
longer designed into the system, we feel it adventageous to discuss it here
50 as to provide additionel insight into the prograrming problems involved,
to provide an addéitionel notivetion for the processes vresently chosen in the
ssten, and finally to illustrate further how blind enureretion, vhich often
gets out of hand, can be replaced by stratecic "snort-cuts” seen as a result
of patterns in the forrmlas. '

The lexicon given in the introduction contains a2ll unbound, subseripi-
less variables. This vas easily prograrmed: the F's were placed in the
A-register and each quantifier letter (all of course are universal) is
vlaced on a previously empty list Q. During 2 left to right scan of the
forrmula proper, each variable name 1s tested against the entries on §, so that
if no comparison is found, and the variable under test is not followed im-
rediately by "/", then it is placed on a list L vhich represnts the lexicon.
This process continued through all the F's gives 2ll lexical member neames
obtained from unbound, subscriptless variables. After testing all the F's,
if list L is empty, "x" is placed on list L, in line with the theory of our
lexicon., The recursive process involved in extending the lexicon is to now
replace all subscript letters by members of the lexicon. This process cen
generate a representive lexicon, that is, one that is complete enough to solve
& large percentage of problems, only if a1l subscript strings are of length 1
(with perheps only one of length 2). WVhen an attempt 1is made to generate a
lexicon for a set of formulas in which appear subscript strings of lengths 2,
3, or more, the number of elements needed in the lexicon becomes extremely
lerge., This not only makes the generation of the lexicon difficult s but makes
the rest of the rmachine procedure very inefficient.

As an example of the lexicon difficulties consider the example of the
two function terms Exy, and Guy,, Suppose "a" vas previously determined to
be & member of the leﬁcon, thereiore, Xaa, and Ugga, &re members of the lex-

icon, The following are also members: XXapls XoXyn, Veax,,, *** ¥au
)

T

I7 cne melies the attempt, & method of enumeration is most difficult, if not
glrmost imucscibvle, to progrem in general. Imagine the difficulty of four or
Tive multisubscerirteé predicates!

c., Towerd Ovtinmzl Universal Instantiation

Tae vurpose of an attempt towerd optimel instantistion of the func*ion-
el nermel forme is to instantlate in such & wey so as to get all string. of
lemical mexbers folloving like predicates to be identicel. This is desirable
since, the more identical lexicel instence terms we have in a lexical instan-
tiation of the set of F's, the greater will be our chance of erriving at a
trithelunetional contradictiion which is our overall goel. This vhase of the
rzchine rrocedure proceeds e&s follows: e scen is made of the funetional
normal forms arnd lists are formed, each containing like predicates followed
o the sirings of symbols that appeared after each predicate. During the
forzation of tke lists 2 parenthesis 1s placed on each side of a symbol that
conzzine 2 bowmi verieble (all subscripted terms, and bound unsubscripted
terme). Along with each eniry in the lists is pleced its location in the set
oI T'g, k2t iz, the particular F froz vhich the predicate and siring vas
extracted, and the ilZ oeceurrence of that particuwler predicate taken fronm
lelt o right vithin the T, TFor exemple, "G(x)(uy)v, Fp, 3" would be typical,

a vz vhe thiré occurrence of predicate C -vithin Fp, containing the

et ot
1 f

¢
1

ie w, the bound variable x, and the subscripted term uy, These
4 L X

cred 1 to m, vhere m is the nmumber of predicate letters thet

gz of I's.

f.
0
(=

through . is made., The reason for this is that in-

s will be rade and the results tested: If they fail to produce
ietion In the Zinel (truth-functionel) iest, a different instant-
211 be made and azaln tested. e rust have a master copy of the
»om which we can make cories for use in our attempts at instantiation.

0 cl 0O

[
ol

b

&~ comr of List 1 is considered first with an exazmination of the first
s;=col foiloring each tredicate letter. An attempt is now to be made to
meliimize trne nwider of identical symbols e cen substitute into this vosition
T lexicel instzntietion. Obviously, if more than one unbound varieble type
erxzears In wkic first position after the predicate letters, these can never
Te made ldlenticel. I, however, at least one unbouné veriasble appeers along

oL subscripted terms, then a decision rmust be made as to the choice of
insienilezion. If the number of subscriptless, bound variables plus one is
-

Greezter thar the nudber of like letters followed by subseript strings of

equal length (€48e, Worgy Uprys W) Plus the mumber of subscriptless, bound
vorietles, thern the sub%criptless, bound varisbles end parentheses are placed
©" the unbound verieble., On the other hand, if this is not the case (the
mTber of wnbound, subscriptless variebles plus 1 is not greater), then the
surserintec letters in the terms which qualified are instentisted with the
wnoovnd verieble, parentheses are dropped, and the bounded, subscriptless
veriztles are each instantiated with & representative subscripted term which

; Just had its subscrivts instantiested with the bound veriable. After all

» if any first symbols following the predicate letiers have not yet been
anti s the vrocess is repeated starting with the copy of 1list 1 as it
(azter he partial instantiation).

.

L—- c!; [
IS BEANEY
n - m
¢l 0

]

(o8
n
o)
Q

At this point we have instantiated the first symbol place following all
predicate letters on list 1. Before going to the second symbol position, we
must consider the effects of owr instantiations made in symbol position 1.
Vhenever an instantiation is mede in a quantificational formula, every occur-
rence of the variable within the scope of the quantifier must be instantiated
in the same way. Each time, therefore, an instantiation is made in a particu-
lar F, it must be similarly made for each occurrence of the bound variable
in each similar F in all lists. This, of course, is done by means of the
location information following the predicate strings on all lists.

We are now in a position to examine position 2 (still on list 1) for
purposes of instantiation. The procedures will be identical with those dis-
cussed ebove for position 1 except that now we have an added criterion. Since
the symbols in position 1 have been pertitioned into sections of identical
lexicon membders, we now wish to instantiate in position 2 as to match the
partition of position 1 as closely as possible. The procedure is as follows:
instantiations of position 2 are made as outlined for position 1 and each
result stored. That is, the partitions of position 2 may be different, and
if so, each is stored. Each partition (instentiation pattern) is théen com-
pared with the partitioning of position 1. The one that matches best is
chosen as the instantiation of position 2. The vrocedure then continues with
position 3, which is compared with position 2. and so forth. (Better still,
but still not optimal, is that position n ought to be compared with positions
1, 2, sesy n=1, ané maximized for match, but for simplicity, and since it
does not seem to have en important effect, this will not be done here.) Each
time an instantietion is chosen, then each occurrence of the bound variable,
again, is similerly instantiated if occurring within the same F.

Vhen all instantiations on list 1 have been determined, we proceeé¢ in an
identical fashion with list 2, then list 3, ete. VWhen this process is com-
plete ve are ready for the next phase of the overall machine procedure, name-
ly, the test for a truth-functional contradiction.

The truth-functional forms are built from & copy of the set of F's with-
out quantifiers and with the instantiations a&s now appear on the lists of
predicate types. The test procedure for the truth-functional contradiction
will be discussed in the next section. If the truth-functional test at this
point assures us of a contradliction, our machine procedure concludes that the
original argument was valid. If, however, we are unable to find a contra-
dietion, we must make an appropriate modification and a new attempt at forcing
a truth-functional contradiction. The motivation for the renewed attempt pro-
cedures we have chosen is given after its procedures are described.

Ve renumber the previously mentioned lists of predicates as follows:
1 becomes 2, 2 becomes 3, ..., m-1 becomes m, and m becomes 1. Then the
entire procedure for instentiation and the truth-funttional test is repeated
on a new copy of the original predicate lists. If the condition occurs that
the list originally numbered 1 progresses to the voint where it is now num-
. bered m and still the truth-functional test fails, then the machine procedure
is uneble to conclude anything ebout the original quantificational argument
and the machine halts.

The reasoning behind the above change in the list numbering, as a basis
for our renewed attempts to derive a truth-functional contradiction, can be

9

seen from the following example: suppose the following lists had been origi-
nally formed by the scan of some F's:

P(x), Fo, 1 B
P(ux): F3) 1
List 2 H(x), Fp, 1

H(yx)} FQ) 2

Our procedure would instantiate ng) on list 1 line 2 as Pw, since our pro-
cedure would instantiate Pu, for P x) only if there would be a resulting gain
as far as the number of like predicate strings is concerned, which in this
case does not hapven. This instantiation of w for (x) forces H(x) of list 2
line 1 to be instantiated by Hw., This would make it impossible to instanti-
ate H(yyx) so as to be identical with Hw, Suppose further that no contra-
diction could be found in the itruth-fumctionel instances unless the two »re-
cicates on list 2 are instantiated with the same lexical member. Thus, unless
we instantiaste list 2 first, no contradiction can be found, and although the
originel argument is velid we will not find it so by not extenaing our ine
stantiation procedure, licw, by instantiating list £ first: Pu,
Py, will pe obtained and will result in owr machine proceﬁure peing able
to state that the original argument is wvalid.

d. Testing for Truth~-Funectional Inconsistenc;,'

After a lexical instantistion of the functional normal forms, they are
no longer a set of quantificational formulas, but apye then a set of truth-
functional formulas. At this stage of the overall procedure, the set must be
tested for a contradiction, That is, the question must be answered-as 1o
whether or not it is possible to assign values of true or false to the "truth-
functional atoms" (the smallest grouping of letters that can take on a truthe-
value in the set of formulas, i.e., "Gug,", or "nyaaxa", etc.) so as to get
ell formulas of the set at once, that is, the same truth-value to all occur=-
rences of like symbols throughout the set of formuwlas. If the amswer is no,
that is, no such assignment is possible, then the set is said to be truth=
functionglly inconsistent, and our procedure assures us that the original
argument presented to the machine for test is valid.

Questions such as the one above, concerned with whether or not a set of
truth~-functional formulas is contradictory, consistent, inconsistent, etc.,
are all decidable, since truth-tgbles cen always, in theory,be used in a
machine decision procedure. There are many nmachine procedures that have been
designed to answer such questions about truth-fumctional formulas. Each de-
signed to be far more efficient than e brute force table-building procedure.
(See for example reference 8.)

10

Rether than attempt t. lesign a different method of testing for truth-
functional inconsistency, wh.:h would probably not be as good as the above
mentioned works, we will assume that one of the existing methods has been
adapted to our needs.

AS of the tactical Devices Required for an
Efficient Machine Realization

In our discussions of the processes that are involved in the machine
attack on the problem, certain processing devices and cepebilities were as-
sumed to exist, i.e., scanning registers, forming and interrogating lists of
information, etc. None of the processes used are beyond the capabilities of
existing machines or some programming languages in todays technology. We
will here sumarize informally certain functions that would be desirable to
any machine or language given the Job of realizing the overall machine pro-
cedure of this thesis.

The machine must have & list of variable names, and a list of individual
names, both stored in the machine before any given problem can be worked on.
The lists must be mutually exclusive. The machine may also have a list of
predicate letters, and a list of sentential letters, and if these were also
rutually exclusive lists it would simplify the procedure somewhat. This is
not absolutely necessary, however. If the machine can, as & minimm, recog-
nize capital letters, and if a capital letter is followed by a variable name
or an individusl name, then it is a predicate letter, otherwise it is a sen-
tential letter.

The machine¥* will have & general storage aree that will store strings of
symbols, the strings being of variable length, and lists of information (e.g.,
predicate letters and strings of symbols) of variable depth. The strings and
lists will be stored with an addressing capability as follows: & string
nemed, e.g., Fo will be stored in a location also called "Fp", Therefore, the
machine can "store string P3," or "put string F; into the A-register", ete.
The machine will also handle lists in a similar way. Ve can say, for example,
"store list 1", or "interrogate list 3 for the following...". Another impor-
tant machine function will be the a&bility o duplicate a string or a list.
This capability was used throughout our program, and seems to be an important
function in problems of this nature.**

The machine will have a general working register that will be able to

" nold & string of symbols., The register will be flexible in the sense of being

able to hold strings of variable length. Parts of the string held in this
register can be replaced by strings which need not be the same size as the
parts they are replacing., Therefore, the result of such a replacement may be
a string in this working register of equal, smaller, or longer length. The
register will be composed of cells which will hold basic symbols of our
system, e.g., & cell might hold a predicate letter, a "/", a variable name,

a "(", etc. These cells will be interrogated usually by a left to right scan,
and the machiné will react as a fimction of the symbol found in the perticular

* Ve will now be referring to an "ideal machine (program or hardware) for the
mechanization of our procedures.

** It 1s obviously connected with trial and error techniques,
11

cell under interrogation. We will usually use this capebility as follows:

we want to ask if some string X is the head of the contents of the working
register (i.e., if X concatenated with Y is the contents of the working
register). X might be of the form "(" concatenated with a general name of
some type of symbol, followed by ")". The machine will be aided in situations
of this sort by table look-up procedures to determine whether symbols are of
such and such type, or of such and such & class.

The machine is able to concatenate onto, or deconcatenate from, either
end of this working register. The machine can store the contents of the
working register into general storage, clearing, or not clearing itself, as
it does so. We can call strings from general storage into the working regis-
ter, each such operation will clear the previous contents, if any, of the
working register.

The machine also has an auxiliary register that can be cleared, strings
can be coplied from it, and strings can be concatenated onto either end of its
contents, It must also be capeble of holding strings of variable lengths,
Frequently used capabilities will be: deconcatenate a string X from the
working register and concatenate to the right of the contents of the aux-
iliary register. Or, replace by the contents of the auxiliary register, each
occwrrence in the string contained in the working rewlister, of the symbol y.

With regard to the realization of our machine procedure on a computer,
symbol manipulation languages are well-suited to problems of this nature.
Comit, & new user-oriented general purpose symbol manipulating programming
Ianguage? seems to be the one best suited to our problem. The language vas
designed to make operations on strings of information extremely easy to per-
form, and very natural to use. When we spoke of placing strings of arbitrary
length, and lists of arbitrary depth into a general storage area, this storage
area in Comit would be the "shelves" of the langusge. The general working
register of which we spoke would be Comit's "workspace". The auxiliary regis-
ter that we needed could be any shelf, since, among other operations, Comit
allows concatenation or deconcatenstion on the left or right of any shelved
string. Scanning a string in the workspace of Comit and performing insertions
or Geletions is the most powerful feature of the Comit system, since it gives
one a feeling of naturalness in not having to worry about such things as al-
location, overflow, register size, etc, Strings, perhaps representing lists,
can be duplicated easily within the system. The Comit system is highly recom-
mended to anyone interested in machine solutions for problems vhich require
programming techniques similar to those discussed.

An Illustration of the Machine Operating on & Problem*
Given: Py (x)(By)((Fx. ~ Gx) > Hxy.Jy))
Py (Bw) (x)((Rw.Fw. (Hvx > Kx))

P3 (x) (kx > ~ Gx)

.k (x) ~ (Kx.Jx) This last line is
the negation of the
conclusion which follows
from the first three lines.

*The argument used in the illustration is from Quine, reference 1.
12

First Phese: The Machine Format‘ion -ot ;he F\métione.l Normal Foms

A-Register S-Register
Time 1 (empty) | (empty)
Time 2 (x)(&y)((Fx. ~ 6x) D (Bxy.Jy)) (empty)
Time 3 (x)(Ey)((Fx. ~ Gx) » (Bxy.dy)) x
Time b (x)((Fxo ~ Gx) > (Hxyy.dyg)) x
Time 5 (enmpty) (empty)

The contents of the A-Register were transferred to storage location

" 1
named Fl .

Time 6 ... The above process continues for Py, P3, end Py .

Second Phase: The liachine Instantiation

The F's determined from Phase 1 ere:

(x)((Fxe~ Gx) > (Ext .Jy))
(x)(tzr Fu(Brx > Kx))
(x)(x&x = ~ Gx)

(x) ~ (Kx.Jx)

Tae mechine proceeds as outlined on pages 7 and 8 forming the follow-

ing lists:

List 1

List 2

List 3

List &

List 5

F(x), F1, 1
Fw, Fp, 1
G(x), Fy, 1
¢(x), Fyy 1
H(x)(yx), Fip 1
Hw (x), Fo, 1
J(Yx)t Fiy 1
5(3)9 R, 1

N K.K:"Fat..,l .
K(x), Fg; 2
K(x), F3, 1
K(z), B, 1

i3

The first instantiation attempt evolves as follows:

List 1 Fv, Fp, 1 ~ (x) was instantiated as w, therefore,
eech occurrence of the bound veriable x
Fwy Fpy 1 in formulae Fy is determined as w,

st 2 Gv, Fy, 1
6(x), F3, 1
List 3 B (yv), B,y 1
Listh Ty, ¥, 1
J(x), Fy, 1
List 5 Kw, Fp, 1
K(x), Fp, 2
K(x), F3, 1
K(x), F, 1
Continuing the process:
List 1 Fw, Fl, 1
Fw, F2’ 1l
List2 G, Fp, 1)
G w, Fg, 1 (x) was instentiated as v, therefore,
e eechpowmd x in formula F3 is determined as v.
List 3 E v(yw) s Fyp 1
E w(x), Fyy 1
List L I ¥ys Fys 1

J(x), F,1
List 5 Kw, Fpy 1

K(x)] F2, 2
K w, F3, 1
K(x), Fh’ l

Continuing the process:
Listl Fw, P, 1
Fw, ra, J.'
List2 Gw, Py, 1
G w, 1'2, b §
List 3 Hw Y Fl, 1
Hvy, Fpy l (x) was instantiated as y,, for (x) in
135t b gives rise to the Following
truth-functional forms:
1. (A . ~aw) D (Buyy. Jyy)
2, kv .M (Bwy, = EKyy)
3. kv O ~ Gw
be o~ (B o I5)

Since Kw and Fw must be true (from 2) then Gw must be false (from 3).
Bwy,, and Jy,, must therefore he true since (Fw. ~ Gw) is true (from 1). Ky,

must be true since Hwy;, is true (from 2) Jyyy must be false, since Ky,, is true

(from 4). But Jy,, cannot be true and false, therefore the set of truth-
functional forms 1s contradictory. And, therefore, the original argument:

(x)(Ey)((Fx. ~ Gx) = (Bxy.Jy))
(Bx)(x)((Rw.Fw.(Bvx = EKx))
(kx> ~ ex) '"
therefore, (k)(Kz.JV) is wvalid.
Problems for Muture Research

How can one compare the problem—-solving power of the machine procedure
of this report with other known methods?

If the machine fails to f£ind a proof, how can further attempts de made
by an extended machine to increase the overall power of the procedure?

Give a proof that the main heuristic, namely meking all strings following
like predicate letters identical, is the best goal with respect to forcing a
truth-functional contradiction,

:smmwmmwtmatmtmmmaummp
identical the best one?

SOGRIAART e v oy Ee @ L Ths Ywd don o brameb fod 08 4 omw e akl

1.

e,

3.

L,

Se

6.
T.

8.

9.

Quine, W. V., "A Proof Procedwre for Quantication Theory,” Jownal of
the Association for Symbolie logie, 1955.

Davis, M., and Putnam, H., "A Computing Procedure for Quantification
Theory," Associstion for Computing Machinery (Jownal of), 1960, July.

ﬁang, B., "Toward Mechanical Mathematics," I. B, M, Journal of Research
and Development, January 1960.

Gilmore, P., "A Proof Method for Quantification Theory,” I. B. M.
Journal of Research and Develoment, January 1960.

Patton, T.,"lecture Notes for Philosophy 524," University of
MIMR, 1961-19&0

Kleene, S., "Introduction to Metamathematics,” Van Nostrand, 1952.

Patton, T., "A System of Quantificational Deduction,” Philosophy Depart-
ment, University of Pemnsylvania, 1962,

Copi, I., "Programming an Idealized General Purpose Computer to Decide
Questions of Truth and Falsity," University of Michigan, 1359,

Yngve, V., "Introduction to Comit Programming,” M. I. T., 1961.

DISTRIBUTION LIST

Commanding General

U, S, Army Electronics Command
ATTNt AMSEL=-AD

Fort Monmouth, New Jersey

0ffice of the Assistant
Secretary of Defense
(Research and Engineering)
ATTNs Technical Library
Room 3E1065, The PFentagon
Washingtoen 25, D, C,

Chief of Research and
Development
Depertment of the Army
WBShington 25’ D. C.

Chief, United States Army
Security Agency

ATTY: ACofS, GL (Technical
Livrary)

Arlington Hall Station
Arlington 12, Virginia

Corranding Officer

U. S, Arry Electronics Research
and Development Activity

ATTR: Technical Library

Fort Huachuca, Arizona

Commanding Officer

Us S. Army Electronics Research
and Development Activity

ATINs SELWS-AJ

Whitg Sands, New Mexico

Cormmanding Officer

Us S. Army Electronics
Research Unit

P." 0. Box 205

Yountain View, Californis

Comranding Officer

Us S¢ Army Electronics Materiel
Suppert Agency

ATTN: SELMS=ADJ

Fort Hommouth, New Jersey

Copies
3

Commanding Censral

Us. S. Army Satellite

Communications Agency

ATTN: Technical Documents
Center

Fort Monmouth, New Jersey

Commanding Officer :

U, S, Army Enginesr Research

and Development Laboratories

ATIN: Technical Documents
Center

Fort Belveir, Virginias

Commanding Officer

U. S, Army Chemical

Warfare Laboratories

ATTN: Technical Library,
Building 330

Army Chemical Center, Maryland

Commanding Of ficer

Harry Diamond Laboratories

ATTN: Library, Building 92,
Room 211

Washington 25, D, C.

Headquarters, -United States
Air Force

ATTN: AFCIN

Washington 25, D, C,

Rome Air Development Center
ATINs RAALD

Griffiss Air Force Base
New York

Headquarters

Ground Electronics Engineering
Installation Agency

ATTN: ROZFEL

Griffiss Alr Force Base

New York -

Commanding General
U, S, Army Materiel Command
ATTN: RLD Directorate

Washington 25, D, C,

(1)

Distribution List (Cont)

Copies Copies

Aeronautical Systems Division 1 Chief, Bureau of Shipe 1
ATTN: ASAML ATTN: Code LSk
Wrig-t=-Patterson Air Force Base Department of the Navy
Ohic Washington 25, D, C.
U, S. Air Force Security 1 Chief, Bureau of Ships 1l
Service ATTN: Code 686B
ATTN: ESD Department of the Navy
San Antonio, Texas Washington 25, D, C,
Headquarters 1 Director 1
Strategic Air Command U, S, Naval Research Laboratory
ATTN: DOCE ATIN: Code 2027
Offutt Air Force Base, Nebraska Vashington 25, D, C,
Headquarters 1 Commanding Officer & Director 1l
Research & Technology Division U. S, Navy Electronics Laboratory
ETTiv: RTH ATTN: Library
Bolling Air Force Base San Diego 52, California
Wwashington 25, D, C,

Commander 1
Air Proving Ground Center 1 U, S, Kaval Ordnance Laboratory
ATT: FGAFPI White O=k
Eglin Aiir Force Base, Florida Silver Spring 19, Maryland
Kir Force Cariridge Research 2 Commander 20
Laboretories Arred Services Technical
ATl CRIG =K _ Information Agency
L, G, Hanscor. Field ATTI: TISIA
Bedford, Hassachusetts Arlington Hall Station

Arlington 12, Virginia
Headcuarters : 2
Electrornic Systems Division - USAELRDL Liaison Officer 1
.T'E'Ii: ESAT
L. G. Hanscor. Field Bt ATy Tankelutomotive Center
Bedford, Nassachusetts Center Line, Michigan
AFSC Seientific/Technical 1)
Liaison Office USAELRIL Lialson Officer 1
U, &, llaval Air Development Center Naval Research Laboratory
Johneville, Fa, ATiN: Code 1071

Washington 25, D, C,
Chief of Naval Research 1
ATTN: Code L27 USAELRDL Liaison Officer 1l
Departrment of the Navy Fassachusetts Institute of
VWashington 25, D, C. Technology

Building 26, Reom 131
Bureau of Ships Technical 1 77 Massachusetts Avenue
Library Cambridge 39, Massachusetts
ATTN:s Code 312 -

Vain Navy Bus.lding, Room 1528
w“hiﬂﬁm 25’ b‘ . (2)

A Sy

Distribution List (Cont)
Coples

USAELRDL Liaison Office
Aeronautical Systems Division
ATTN: ASDL-9

Wright=-Patterson Air Force Base

Ohio

U, S. Army Research Liaison
Office ‘
Lincoln Laboratory

P. 0. Box 73

Lexington, Massachusetts

USAELRDL Liaison Officer
Rome Air Development Center
ATTN: RAOQL

Griffiss Air Force Base
New York

USAEIRDL Liaison Officer

U. S. Army Combat Developments
Command, CDCIN-EL

Fort Belvoir, Virginia

USAEMSA Liaison Engineer
USASCAJ
AFO 3L3
San Francisco, California

Technical Dir., SELRA/CS
Headquarters, USAEIRDL

USAELRDA<White Sands
Liaison Office
SELRA/LNW, USAELRIL

AFSC Scicntific/Technical
Liaison Office _
SELRA/LNA, USAELRIL

Corps of Engineers
Lisison Office
SEIRA/LNE, USAELRDL

Marine Corps Liaison Office
SELRA/LFR, USAELRDL

USACDC Liaison Office
USAELRIL

Copies
Chief, Technical 6 |
Information Division
Headquarters, USAKLRDL
USAELRDL Technical b
Documents Ceanter
SEIRA/ADT, Hexagon
Cormanding Officer 1l
U. S. Army Security Agency
Processing Center
Fort Monmouth, N. J.
Chief Scientist 1l

U, S, Army Electronics Command
ATIN: AMSEL-SC
Fort Mormouth, N. J.

File Unit Nr. 1

_Rm, 3D-116, Hexagon

8))

Director of Research
SEIRA/IR, USAEIRDL

Director, Institute for
Exploratory Research, USAEIRDL

Technical Staff, IR
Exploratory Research Div. C

X
10

